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Interval-valued Information Systems (IvIS) reflect the uncertain information in real scene, 
in which the attribute value of objects are all interval values rather than single values. 
Data information analysed by three-way decisions is not static but dynamically changing 
in IvIS, which results in the updating of positive region, boundary region and negative 
region of decision class X . In this paper, a matrix computational framework based on λ-
similarity relation is proposed on the variation of the attribute set, attribute value and 
object set. Based on the framework, some incremental algorithms are proposed to calculate 
the positive, boundary and negative region of X in dynamic IvIS. Finally, comparative 
experiments on data sets from UCI are conducted when attribute set, attribute value 
and object set are updating over time, respectively. Experimental results show that in 
comparison with the traditional algorithm, the proposed algorithms can effectively save 
time for the computation of positive, boundary and negative region of X in dynamic IvIS.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The main idea of three-way decisions (3WD) is to divide the whole into three independent parts and apply different 
decision methods for different parts, which provides an effective strategy and method for solving complex problems [46,
44,47,45,30,35,13]. Various three-way decisions methods derived from Trisecting-Acting-Outcome (TAO) model have been 
widely applied in machine learning, data mining, pattern recognition and other fields, such as three-way classification [42,
23,9,64,61], three-way clustering [52–54,1,51], three-way recommendation [27,59,48,15,58], three-way reduction [19,8,31,38,
2,20], three-way strategy [10,37,26], three-way analysis [36,7,33], three-way space [11,12], three-way incremental learning 
[43,57,29], three-way concept learning [18,14], three-way matroid learning [21,22], three-way group decision-making [25,
39,34], etc.

Data analysed by 3WD are commonly explicated and presented through the information system, which includes object 
set, attribute set and attribute value. However, in the real scene, data information is often not presented in the form of 
single values, but interval values. In recent years, many scholars have studied Interval-valued Information Systems (IvIS) and 
have made lots of achievements. By storing the minimum and maximum attribute value of certain object into the neighbour 
locations of original dataset, Yin et al. [50] transformed the original dataset into the interval-valued dataset. Xie et al. [41]
introduced the information structure of IvIS and then proposed new measures of uncertainty for IvIS. Based on the θ -
similarity relation, Dai et al. [4] gave θ -accuracy and θ -roughness to evaluate the uncertainty for interval-valued information 
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system. Through selecting decision rules with a minimal set of features for classification of IvIS, Yee et al. [49] proposed 
a classification rule adapting to IvIS based on rough sets. Miao et al. [32] proposed the concept of α-maximal consistent 
blocks, which can provide simpler discernibility matrices and discernibility functions for IvIS. With the α-maximal consistent 
blocks, it is faster to get the upper and lower approximations than traditional ways. Liang and Liu [24] explored decision 
mechanism of interval-valued decision-theoretic rough sets. With a degree of possibility ranking method, decision rules 
under a certain risk attitude of decision maker was derived. Du and Hu [6] proposed approximate distribution reducts in 
inconsistent interval-valued ordered decision tables through dominance-based rough set, which was based on substitution of 
the indiscernibility relation by the dominance relation. With the discernibility matrix, the substitution of the indiscernibility 
relation by the dominance relation was extracted in IvIS. Liu et al. [28] investigated a new fuzzy relation by means of 
similarity between interval values in IvIS. By α-approximate equal relation, the unsupervised attribute reduction method 
based on information entropy was constructed. Based on S-rough sets and grey set, Li and Hu [17] proposed the concept 
of S-grey rough sets and its lower and upper approximations. S-grey rough sets was proved to be an effective tool for 
processing the data information in IvIS.

Under the information technology architecture of Internet and Cloud Computing, data in IvIS usually changes dynami-
cally. However, there are few studies on dynamic IvIS, whose attribute sets, object sets and attribute values are not static
but rather dynamically changing with time. Zhang et al. [63] proposed an incremental approach for updating lower and 
upper approximations in the view of λ-similarity relation when an attribute set was added into or removed from the IvIS, 
respectively. Zhang et al. [62] recommended the average dominance relation and established average dominance rough sets 
model on interval-valued hesitant fuzzy information system. Then four mechanisms for updating approximations from the 
perspective of optimism and pessimism were proposed when updating the attribute set. Generally, the approaches above 
ignore the updating of object sets and attribute value though they are more effective than traditional ways. Aiming at updat-
ing attribute sets and object sets effectively, Yu and Xu [55], Yu et al. [56] proposed two dynamic approaches for computing 
rough approximations in IvIS, respectively. However, these two methods lack a unified framework to deal with dynamic IvIS 
meanwhile.

In this paper, we establish a unified matrix calculation framework to calculate three-way decisions regions for dynamic 
IvIS. The rest of the paper is organised as follows. Section 2 reviews some basic knowledge of intervals, IvIS and binary 
relation Sλ

A . Section 3 proposes 3WD in IvIS based on matrices approach. Section 4 introduces the algorithm of updating
matrices for dynamic data sets. Some experimental analysis of matrices approach and traditional approach are discussed in 
Section 5. Section 6 concludes the paper and elaborates on future studies.

2. Preliminaries

In this section, we introduce the basic knowledge of interval value and similarity relation in IvIS.

Definition 1. [16] Denote I = [b−,b+] given by 
[
b−,b+]= {x ∈R | b− ≤ x ≤ b+,b− < b+}. I is called interval, where b− and 

b+ are called the lower and upper bounds of I , respectively.

If b− ≥ 0, then I is called positive interval and if b+ ≤ 0, then I is called negative interval. When b− = b+ , the interval I
will degenerate into a single real number.

Definition 2. Let I = [b−,b+] be an interval, the length of I is defined as follows.

l (I) = b+ − b− (1)

Suppose I1 = [b−
1 ,b+

1

]
and I2 = [b−

2 ,b+
2

]
are two intervals. The union I1 ∩ I2 and the intersection I1 ∪ I2 are also defined 

as an interval.

1. I1 ∩ I2 =
{[

max
(
b−

1 ,b−
2

)
,min

(
b+

1 ,b+
2

)]
, max

(
b−

1 ,b−
2

)≤ min
(
b+

1 ,b+
2

)
∅, otherwise

2. I1 ∪ I2 = [min
(
b−

1 ,b−
2

)
,max

(
b+

1 ,b+
2

)]
Definition 3. [63] Let I v I S = (U , A, V , f ) be an Interval-valued Information System (IvIS). U is a non-empty finite set of 
objects; A = {a1,a2, · · · ,am} is a non-empty finite set of attributes; V =⋃a∈A Va is a set of intervals. For ∀a ∈ A, ∃Va ∈ V
under the mapping from U × A to V, expressed as f : U × A → V .

Since similarity relation is less strict than indiscernibility relation, many classical Rough Set Theory (RST) based on simi-
larity relation have been applied in IvIS recent years. Many researchers have done lots of works on similarity relation from 
different perspectives [40,3,28,5]. Liu et al. [28] noted that similarity relation based on similarity degree Sk

i j distinguishes 
the difference between two interval values very well. Therefore, we take the similarity degree Sk

i j as the basis for similarity 
relation in IvIS.
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Table 1
An interval-valued information system.

a1 a2 a3 a4 a5

x1 [0.1,0.6] [0.4,0.6] [0.2,0.4] [0.0,0.7] [0.2,0.4]
x2 [0.6,0.8] [0.4,0.6] [0.3,0.5] [0.8,1.0] [0.5,0.8]
x3 [0.2,0.4] [0.0,0.4] [0.2,0.8] [0.6,0.7] [0.1,0.5]
x4 [0.7,0.8] [0.2,0.6] [0.3,0.6] [0.2,0.5] [0.4,0.9]
x5 [0.3,0.4] [0.2,0.3] [0.4,0.8] [0.4,0.6] [0.4,1.0]
x6 [0.4,0.9] [0.1,0.8] [0.2,0.8] [0.1,0.6] [0.5,0.7]
x7 [0.6,0.7] [0.3,0.7] [0.1,0.2] [0.8,0.8] [0.2,0.6]
x8 [0.6,1.0] [0.7,0.9] [0.2,0.4] [0.4,0.8] [0.4,0.8]
x9 [0.1,0.2] [0.1,0.1] [0.3,0.6] [0.7,0.9] [0.3,0.5]

Definition 4. [63] Let (U , A, V , f ) be an IvIS. U = {x1, x2, · · · , xi, · · · , xn}, A = {a1,a2, · · · ,ak, · · · ,am}. The similarity degree 
between xi and x j under the attribute ak is defined as follows.

Sk
i j = l

(
f (xi,ak) ∩ f

(
x j,ak

))
l
(
( f xi,ak) ∪ f

(
x j,ak

)) (2)

where i, j = 1, 2, . . . , n, k = 1, 2, . . . , m.

Obviously, the similarity degree Sk
i j satisfies the following properties.

1. 0 ≤ Sk
i j ≤ 1

2. Sk
i j = 1 if and only if f (xi,ak) = f

(
x j,ak

)
3. Sk

i j = Sk
ji

Definition 5. [63] Let (U , A, V , f ) be an IvIS, xi, x j ∈ U , and a real number λ ∈ [0.5,1]. The λ-similarity relation with respect 
to the attribute set A is defined as follows.

Sλ
A =

{(
xi, x j

) ∈ U × U | Sk
i j ≥ λ,∀ak ∈ A

}
(3)

It is easy to verify that the similarity relation Sλ
A satisfies reflexivity and symmetry, but not transitivity. Moreover, the 

lower and upper approximation of decision class X can be derived by Sλ
A .

Definition 6. Let (U , A, V , f ) be an IvIS. U = {x1, x2, · · · , xi, · · · , xn}, A = {a1,a2, · · · ,am}, a real number λ ∈ [0.5,1]. Given 
a decision class X ⊆ U , the lower and upper approximation of X are defined as follows.

X Sλ
A

= {xi ∈ U | Sλ
A(xi) ⊆ X

}
X Sλ

A
= {xi ∈ U | (Sλ

A(xi) ∩ X
) = ∅} (4)

Definition 7. The lower and upper approximation of X divide the X into three disjoint regions. They are the positive region 
P O S Sλ

A
(X), the boundary region BN D Sλ

A
(X) and the negative region N EG Sλ

A
(X).

P O S Sλ
A
(X) = X Sλ

A

BN D Sλ
A
(X) = X Sλ

A
− X Sλ

A

N EG Sλ
A
(X) = U − X Sλ

A

(5)

Example 1. In an IvIS given by Table 1, U = {x1, x2, x3, x4, x5, x6, x7, x8, x9}, let X = {x1, x4, x6}. If λ = 0.5, A1 = {a1,a2,a5}, 
we can obtain the lower and upper approximations of X with respect to A1 as follows.
S0.5

A1
(x1) = {x1}, S0.5

A1
(x2) = {x2, x4}, S0.5

A1
(x3) = {x3}, S0.5

A1
(x4) = {x2, x4}, S0.5

A1
(x5) = {x5}

S0.5
A1

(x6) = {x6}, S0.5
A1

(x7) = {x7}, S0.5
A1

(x8) = {x8}, S0.5
A1

(x9) = {x9}
so we have:

X Sλ
A

= {x1, x6}, X Sλ
A

= {x1, x2, x4, x6}
and

P O S S0.5 (X) = {x1, x6}, BN D S0.5 (X) = {x2, x4}, N EG S0.5 (X) = {x3, x5, x7, x8, x9}

A1 A1 A1
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3. 3WD method based on matrix approach

However, the definitions above are not robust enough for tolerating the noisy samples in real applications. Besides, when 
the dataset dynamically changing over time, it is time-wasting for interval-valued information system updating the lower 
and upper approximation of X once again. Refer to the matrices method mentioned in [60], we propose 3WD method based 
on matrices approaches to obtain positive, boundary and negative region in dynamic IvIS.

Definition 8. Let U = {x1, x2, . . . , xn} and X ⊆ U . The characteristic vector G(X) = (g1, g2, . . . , gn)T (T denotes the transpose 
operation) is defined as follows.

gi =
{

1, xi ∈ X
0, xi /∈ X

(6)

where G(X) assigns 1 to an element that belongs to X and 0 to an element that does not belong to X .

Example 2. (Continued from Example 1). Let U = {x1, x2, x3, x4, x5, x6, x7, x8, x9} and X = {x1, x4, x6}. Then G(X) =
(1,0,0,1,0,1,0,0,0)T .

Definition 9. Given an I v I S = (U , A, V , f ). M
Sλ

A
n×n = (mij

)
n×n is called the relation matrix with respect to the similarity 

relation Sλ
A . Then mij is defined as follows.

mij =
{

1,
(
xi, x j

) ∈ Sλ
A

0,
(
xi, x j

)
/∈ Sλ

A
(7)

Corollary 1. Let M Sλ
A

n×n = (mij
)

n×n and Sλ
A be a λ-similarity relation, then mii = 1 and mij = m ji , 1 ≤ i, j ≤ n.

Example 3. (Continued from Example 1). In the IvIS given by Table 1, A1 = {a1,a2,a5}, the relation matrix w.r.t. A1 can be 
described as follows.

M
S0.5

A1
9×9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Definition 10. Let Sλ
A be a λ-similarity relation on U , �Sλ

A
n×n be an induced diagonal matrix of M

Sλ
A

n×n = (mij
)

n×n .

�
Sλ

A
n×n = diag

(
1

λ1
,

1

λ2
, · · · ,

1

λn

)
= diag

(
1∑n

j=1 m1 j
,

1∑n
j=1 m2 j

, · · · ,
1∑n

j=1 mnj

)
(8)

where λi =∑n
j=1 mij, 1 ≤ i ≤ n.

Corollary 2. �Sλ
A

n×n =

⎡
⎢⎢⎢⎢⎢⎣

1∣∣Sλ
A(x1)

∣∣ 0 · · · 0

0 1∣∣Sλ
A(x2)

∣∣ · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 1∣∣Sλ
A(xn)

∣∣

⎤
⎥⎥⎥⎥⎥⎦ and 1 ≤ ∣∣Sλ

A(xn)
∣∣≤ n, 1 ≤ i ≤ n.

Example 4. (Continued from Example 3). The induced diagonal matrix of M
S0.5

A1
9×9 can be computed by Definition 10. �

S0.5
A1

9×9 =
diag (1,1/2,1,1/2,1,1,1,1,1).

Definition 11. [60] Let (U , A, V , f ) be an IvIS and X ⊆ U . G(X) is the characteristic vector of X . M
Sλ

A
n×n is relation matrix 

w.r.t. A and �Sλ
A

n×n is the induced diagonal matrix of M
Sλ

A
n×n . The n-column vector H(X) is defined as follows.
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H(X) = �
Sλ

A
n×n •

(
M

Sλ
A

n×n • G(X)

)
(9)

where • is dot product of matrices.

Corollary 3. Suppose H(X) = (h1,h2, · · · ,hn)T . Let �Sλ
A

n×n = diag
(

1
λ1

, 1
λ2

, · · · , 1
λn

)
, M Sλ

A
n×n = (mij

)
n×n, G(X) = (g1, g2, . . . , gn)T , 

where λi =∑n
j=1 mij, 1 ≤ i ≤ n. Then ∀i ∈ {1,2, . . . ,n}, hi =

∑n
j=1mij g j∑n

j=1 mij
and 0 ≤ hi ≤ 1.

Definition 12. [60] Let 0 ≤ μ ≤ ν ≤ 1. Four cut matrices of H(X), denoted by H [μ,ν] , H (μ,ν] , H [μ,ν), and H (μ,ν) are defined 
as follows.

(1)

H [μ,ν](X) = (h′
i)n×1, h′

i =
{

1, μ ≤ hi ≤ ν
0, else

(10)

(2)

H (μ,ν](X) = (h′
i)n×1, h′

i =
{

1, μ < hi ≤ ν
0, else

(11)

(3)

H [μ,ν)(X) = (h′
i)n×1, h′

i =
{

1, μ ≤ hi < ν
0, else

(12)

(4)

H (μ,ν)(X) = (h′
i)n×1, h′

i =
{

1, μ < hi < ν
0, else

(13)

Theorem 1. Let (U , A, V , f ) be an IvIS and X ⊆ U . Sλ
A be a λ-similarity relation and H(X) = (h1,h2, · · · ,hn)T . Then the lower and 

upper approximation of X in the IvIS can be derived from the cut matrices as follows.

(1) The n-column characteristic vector G 
(

X Sλ
A

)
of the lower approximation X Sλ

A
:

G
(

X Sλ
A

)
= H [1,1](X) (14)

(2) The n-column characteristic vector G 
(

X Sλ
A

)
of the upper approximation X Sλ

A
:

G
(

X Sλ
A

)
= H (0,1](X) (15)

Proof. Suppose G(X) = (g1, g2, . . . , gn)T , G 
(

X Sλ
A

)
= (g′

1, g′
2, . . . , g′

n

)T
, H [1,1](X) = (h′

1,h′
2, . . . ,h′

n

)T
.

(1)⇒: For each i ∈ {1,2, · · · ,n}, if g′
i = 1, then xi ∈ X Sλ

A
. Since X Sλ

A
⊆ X , we have xi ∈ X . According to Definition 6, we 

know that for each x j ∈ Sλ
A(xi), x j ∈ X , which means mij = m ji = 1 and g j = 1. That is, mij = mij g j . According to Corollary 3

and Definition 12, hi =
∑n

j=1mij g j∑n
j=1 mij

= 1 and h′
i = 1. Hence, for each i ∈ {1,2, · · · ,n}, g′

i ≤ h′
i . That is, G 

(
X Sλ

A

)
≤ H [1,1](X).

⇐: For each i ∈ {1,2, · · · ,n}, if h′
i = 1, then hi = 1, which means 

∑n
j=1mij g j∑n

j=1 mij
= 1. That is 

∑n
j=1 mij =∑n

j=1 mij g j . Then 

for each j ∈ {1,2, · · · ,n}, if mij = 1, then g j = 1, that means x j ∈ X . Hence we have Sλ
A(xi) ⊆ X , that is xi ∈ X Sλ

A
and g′

i = 1. 

Thus, for each i ∈ {1,2, · · · ,n}, g′
i ≥ h′

i . Therefore, G 
(

X Sλ
A

)
≥ H [1,1](X).

Therefore, for each i ∈ {1,2, · · · ,n}, we have g′
i = h′

i and G 
(

X Sλ
A

)
= H [1,1](X).

(2) The proof is similar to that of (1). �
According to Definition 7 and Theorem 1, the positive region P O S Sλ

A
(X), the boundary region BN D Sλ

A
(X), the negative 

region N EG Sλ
A
(X) can be generated from the cut matrices, repectively.

(1) The n-column vector G 
(

P O S Sλ
A
(X)
)

of the positive region:

G
(

P O S Sλ (X)
)

= H [1,1](X) (16)

A
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Table 2
The characteristic matrices of the positive, boundary and negative region on Table 1.

H(X)
G

(
X S0.5

A1

)
=

H [1,1](X)

G

(
X S0.5

A1

)
=

H(0,1](X)

G

(
P O S(0.7,0.3)

S0.5
A1

(X)

)
=

H [0.7,1](X)

G

(
BN D(0.7,0.3)

S0.5
A1

(X)

)
=

H(0.7,0.3)(X)

G

(
N EG[0,0.3]

S0.5
A1

(X)

)
=

H [0,0.3](X)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1/2

0
1/2

0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
1
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
1
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2) The n-column vector G 
(

BN D Sλ
A
(X)
)

of the boundary region:

G
(

BN D Sλ
A
(X)
)

= H (0,1)(X) (17)

(3) The n-column vector G 
(

N EG Sλ
A
(X)
)

of the negative region:

G
(

N EG Sλ
A
(X)
)

= H [0,0](X) (18)

Corollary 4. Given a pair of threshold (α, β), the (α, β)-probabilistic positive, boundary and negative region can be generated from 
the cut matrices, repectively.

(1) The n-column vector G 
(

P O S(α,β)

Sλ
A

(X)

)
of the positive region:

G

(
P O S(α,β)

Sλ
A

(X)

)
= H [α,1](X) (19)

(2) The n-column vector G 
(

BN D(α,β)

Sλ
A

(X)

)
of the boundary region:

G

(
BN D(α,β)

Sλ
A

(X)

)
= H (α,β)(X) (20)

(3) The n-column vector G 
(

N EG(α,β)

Sλ
A

(X)

)
of the negative region:

G

(
N EG(α,β)

Sλ
A

(X)

)
= H [0,β](X) (21)

where 0 ≤ β < α ≤ 1.

Example 5. (Continued from Example 4). In the IvIS given by Table 1, U = {x1, x2, x3, x4, x5, x6, x7, x8, x9}, X = {x1, x4, x6}, 
λ = 0.5, A1 = {a1,a2,a5}, given a pair of threshold (α, β) = (0.7, 0.3), we can obtain the positive, boundary and negative 
region as follows (Table 2).

4. Matrices updating approaches oriented dynamic IvIS

In order to reduce the computational cost of updating the positive region P O S Sλ
A
(X), boundary region BN D Sλ

A
(X) and 

negative region N EG Sλ
A
(X) in dynamic IvIS, we propose incremental matrix updating approaches oriented dynamic IvIS in 

this section. In general, there are three situations about dynamic IvIS:
(1) variation of the attribute set
(2) variation of the attribute value
(3) variation of the object set.
In terms of traditional algorithm, the key step is to construct an evaluation function and a pair of threshold oriented 

dynamic IvIs. Considering the 3WD method in Probabilistic Rough Set (PRS), let Pr
(

X | Sλ
A(xi)

)= ∣∣Sλ
A(xi)∩X

∣∣∣∣Sλ
A(xi)

∣∣ be the evaluation 
function. The detailed step of traditional algorithm is as shown in Algorithm 1.
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Algorithm 1: Traditional algorithm for computing the positive, boundary and negative region of X in term of varia-
tion of IvIS (TA-PBN-IS).

input : An interval-valued information system with the attribute set A, a decision class X , a real number λ ∈ [0.5, 1] and a pair of threshold (α, β)

output : the positive region P O S Sλ
A
(X), boundary region BN D Sλ

A
(X) and negative region N EG Sλ

A
(X)

1 begin
2 for i,j=1 to n do
3 for k=1 to m do /* According to Definition 5 */

4 Sk
i j = l

(
f (xi ,ak)∩ f

(
x j ,ak

))
l
(
( f xi ,ak)∪ f

(
x j ,ak

)) ;

5 if Sk
i j ≥ λ then /* According to Definition 6 */

6
(
xi , x j

) ∈ Sλ
A ;

7 else
8

(
xi , x j

)
/∈ Sλ

A ;
9 end

10 end
11 end
12 for i=1 to n do

13 if
∣∣Sλ

A (xi )∩X
∣∣∣∣Sλ

A (xi )
∣∣ ≥ α then /* Compute P O S Sλ

A
(X), BN D Sλ

A
(X) and N EG Sλ

A
(X) */

14 xi ∈ P O S Sλ
A
(X);

15 else if β <

∣∣Sλ
A (xi )∩X

∣∣∣∣Sλ
A (xi )

∣∣ < α then

16 xi ∈ BN D Sλ
A
(X);

17 else
18 xi ∈ N EG Sλ

A
(X);

19 end
20 end
21 end

Data: updating the attribute set A; /* variation of A */
22 updating the attribute value set V ; /* variation of V */
23 updating the object set U ; /* variation of U */

24 repeat begin-end until Data is not updating;
output : the positive region P O S Sλ

A
(X), the boundary region BN D Sλ

A
(X), the negative region N EG Sλ

A
(X)

Algorithm 1 is the traditional algorithm to compute the positive, boundary and negative region of X in dynamic IvIS (TA-
PBN-IS). The step 2 → 11 is to compute similarity degree Sk

i j and λ-similarity relation Sλ
A . The step 12 → 20 is to compute 

the positive, boundary and negative region of X . The step 21 → 24 is to repeat step 12 → 20 while updating IvIS. The total 
time complexity of MA-PBN-IS is shown in Theorem 2.

Theorem 2. In TA-PBN-IS, time complexity of step 2 → 11 is O (n2). Time complexity of step 12 → 20 is O (n). Time complexity of step 
21 → 24 is O (n). So, the total time complexity of TA-PBN-IS is O (n3).

Proof. Time complexity of algorithm is T (n) = O  ( f (n)), where f (n) represents the execution time of algorithm. For step 
2 → 11, it is easy to verify that T1(n) = n ∗ (n − 1) ∗ m. For step 12 → 20, T2(n) = n. Then T (n) = T1(n) + T2(n) = m(n2 −
n) + n. Since m and n are of the same order, T (n) = n3 + n2 − n. Let f (n) = n3, there exist real numbers c = 2 and N = 1
satisfying that when n ≥ N , 0 ≤ T (n) ≤ 2 ∗ f (n). Total time complexity of TA-PBN-IS is O  

(
n3
)
. �

In terms of matrices computing algorithm, under the situation of variation of the attribute set and variation of the 
value of the attribute set, the key step is to updating the relation matrix M

Sλ
A

n×n = (mij
)

n×n and the diagonal matrix �Sλ
A

n×n , 
respectively. While under the situation of variation of the object set, the key step is to updating the characteristic vector 
G(X) = (g1, g2, . . . , gn)T . Several algorithms under different situations are introduced as follows.

4.1. Updating the attribute set

Zhang et al. [63] proposed an incremental approach for updating the approximations of rough sets under the situation 
of variation of the attribute set in set-valued system, which is also effective in IvIS.

Corollary 5. Let A1, A2 ⊆ A be two subsets of A and A1 ∩ A2 = ∅. Suppose M
Sλ

A1∪A2
n×n =

(
m↑

i j

)
n×n

be a relation matrix w.r.t. Sλ
A1∪A2

, 

and M
Sλ

A1
n×n = (mij

)
n×n be a relation matrix w.r.t. Sλ

A1
. Then M

Sλ
A1∪A2

n×n =
(

m↑
i j

)
n×n

can be updated as follows when adding A2 into A1 .

m↑
i j =

{
0, mij = 0 ∨ mij = 1 ∧ (xi, x j) /∈ Sλ

A2

1, mij = 1 ∧ (xi, x j) ∈ Sλ (22)

A2
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Proof. If mij = 0, which means there exists at least an attribute ak(1 ≤ k ≤ m) ∈ A1 making (xi, x j) /∈ Sλ
A1

, then according to 
Definition 9, mij remains unchanged by adding A2 to A1, that is m↑

i j = 0. If mij = 1, that means for each attribute ak(1 ≤
k ≤ m) ∈ A1, (xi, x j) ∈ Sλ

A1
holds. Then if (xi, x j) ∈ Sλ

A2
, that is for each ak(1 ≤ k ≤ m) ∈ A1 ∪ A2, we have (xi, x j) ∈ Sλ

A1∪A2
. 

According to Definition 9, m↑
i j = 1. Otherwise, m↑

i j = 0. �
Example 6. (Continued from Example 5). In the IvIS given by Table 1, U = {x1, x2, . . . , x9}, λ = 0.5, A1 = {a1,a2,a5}, A2 =
{a3,a4}. The relation matrix M

Sλ
A1∪A2

n×n = (mij
)

n×n can be described as follows.

M
S0.5

A1∪A2
9×9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Corollary 6. Let A2 ⊂ A1 ⊆ A. Suppose M
Sλ

A1−A2
n×n =

(
m↓

i j

)
n×n

be a relation matrix w.r.t. Sλ
A1−A2

and M
Sλ

A1
n×n = (mij

)
n×n be a relation 

matrix w.r.t. Sλ
A1

. Then M
Sλ

A1−A2
n×n =

(
m↓

i j

)
n×n

can be updated as follows when deleting A2 from A1 .

m↓
i j =

{
0, mij = 0 ∧ (xi, x j) /∈ Sλ

A1−A2

1, mij = 1 ∨ mij = 0 ∧ (xi, x j) ∈ Sλ
A1−A2

(23)

Proof. The proof is similar to the Proof of Corollary 5. �
Matrix computing algorithm under the situation of variation of attribute set is as shown in Algorithm 2 and Algorithm 3.
Algorithm 2 is matrix computing algorithm for computing the positive, boundary and negative region of X in term 

of adding an attribute set (MA-PBN-AA) while Algorithm 3 is matrix computing algorithm for computing the positive, 
boundary and negative region of X in term of deleting an attribute set (MA-PBN-DA). In MA-PBN-AA, step 5 → 9 computes 

characteristic vector G(X). Step 10 → 17 is to update relation matrix M
Sλ

A1∪A2
n×n . The total time complexity of MA-PBN-AA is 

shown in Theorem 3. Obviously, the total time complexity of MA-PBN-DA is the same as that of MA-PBN-AA. Compared 
with TA-PBN-IS, MA-PBN-AA and MA-PBN-DA update the relation matrix based on the original ones, which can achieve 
identical results with less time.

Theorem 3. In MA-PBN-AA, time complexity of step 3 → 9 is O (n). Time complexity of step 3 → 20 is O (n2). Time complexity of step 
21 → 24 is O (n). The total time complexity of TA-PBN-AA is O (n2).

Proof. For step 3 → 20, T (n) = 1 + 2 + · · · + (n − 1) = n(n−1)
2 . Let f (n) = n2, there exist real numbers c = 1 and N = 1

satisfying that when n ≥ N , 0 ≤ T (n) ≤ f (n). So, total time complexity of TA-PBN-AA is O  
(
n2
)
. �

Obviously, the total time complexity of MA-PBN-DA also is O (n2). Compared with TA-PBN-IS, MA-PBN-AA and MA-PBN-
DA update the relation matrix based on the original ones, which can achieve identical results with less time.

4.2. Updating the attribute value

Corollary 7. Given an I v I St = (U t , At , V t , f t
)

for time t. Suppose the value of xi under the attribute ak be changed in time t + 1, 

which means f t+1(xi, ak) = f t(xi, ak). Then the relation matrix M Sλ
A

n×n = (mij
)t+1

n×n can be updated as follows.

mt+1
i j =

⎧⎨
⎩

0,
(

mt
ij = 0 ∧ (Sk

i j)
t ≥ λ

)
∨
(

mt
ij = 1 ∧ (Sk

i j)
t+1 < λ

)
1,

(
mt

ij = 0 ∧ (xi, x j)
t+1 ∈ Sλ

A

)
∨
(

mt
ij = 1 ∧ (Sk

i j)
t+1 ≥ λ

) (24)
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Algorithm 2: Matrix computing algorithm for computing the positive, boundary and negative region of X in term of 
adding an attribute set (MA-PBN-AA).

input : An interval-valued information system with the attribute set A, a decision class X and a pair of threshold (α, β); Adding an attribute A2

output : the positive region P O S Sλ
A1+A2

(X), boundary region BN D Sλ
A1+A2

(X) and negative region N EG Sλ
A1+A2

(X)

1 begin
2 A1 + A2 → A1;
3 for i=1 to n do
4 m↑

ii = 1;
5 if xi ∈ X then /* According to Definition 9 */
6 gi = 1;
7 else
8 gi = 0;
9 end

10 for j=i+1 to n do /* According to Corollary 6 */
11 if mij == 0 then
12 m↑

i j = 0;

13 else if (xi , x j) ∈ Sλ
A2

then

14 m↑
i j = 1;

15 else
16 m↑

i j = 0;

17 end

18 λi = λi + m↑
i j ; /* Update λi */

19 end
20 end

21 Compute �
Sλ

A1+A2
n×n = diag

(
1∑n

j=1 m1 j
, 1∑n

j=1 m2 j
, · · · , 1∑n

j=1 mnj

)

22 Compute H(X) = �
Sλ

A1+A2
n×n •

(
M

Sλ
A1+A2

n×n • G(X)

)
/* Update H(X) */

23 end

output : G 
(

P O S(α,β)

Sλ
A1+A2

(X)

)
= H [α,1](X), G 

(
BN D(α,β)

Sλ
A1+A2

(X)

)
= H(α,β)(X), G 

(
N EG(α,β)

Sλ
A1+A2

(X)

)
= H [0,β](X)

Algorithm 3: Matrix computing algorithm for computing the positive, boundary and negative region of X in term of 
adding an attribute set (MA-PBN-DA).

input : An interval-valued information system with the attribute set A, a decision class X and a pair of threshold (α, β); Deleting an attribute A2

output : the positive region P O S Sλ
A1−A2

(X), boundary region BN D Sλ
A1−A2

(X) and negative region N EG Sλ
A1−A2

(X)

1 begin
2 A1 − A2 → A1;
3 for i=1 to n do
4 m↓

ii = 1;
5 if xi ∈ X then /* According to Definition 9 */
6 gi = 1;
7 else
8 gi = 0;
9 end

10 for j=i+1 to n do /* According to Corollary 6 */
11 if mij == 1 then
12 m↓

i j = 1;

13 else if (xi , x j) ∈ Sλ
A2

then

14 m↓
i j = 1;

15 else
16 m↓

i j = 0;

17 end

18 λi = λi + m↓
i j ; /* Update λi */

19 end
20 end

21 Compute �
Sλ

A1−A2
n×n = diag

(
1∑n

j=1 m1 j
, 1∑n

j=1 m2 j
, · · · , 1∑n

j=1 mnj

)

22 Compute H(X) = �
Sλ

A1−A2
n×n •

(
M

Sλ
A1−A2

n×n • G(X)

)
/* Update H(X) */

23 end

output : G 
(

P O S(α,β)

Sλ
A1−A2

(X)

)
= H [α,1](X),G 

(
BN D(α,β)

Sλ
A1−A2

(X)

)
= H(α,β)(X),G 

(
N EG(α,β)

Sλ
A1−A2

(X)

)
= H [0,β](X)
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Algorithm 4: Matrix computing algorithm for computing the positive, boundary and negative region of X in term of 
variation of value of attribute set (MA-PBN-VA).

input : An interval-valued information system with the f t+1(xi , ak) changed at time t + 1, a decision class X and a pair of threshold (α, β)

output : the positive region P O S Sλ
A
(X), boundary region BN D Sλ

A
(X) and negative region N EG Sλ

A
(X)

1 begin
2 f t (xi , ak) → f t+1(xi , ak);
3 for i=1 to n do
4 mt+1

ii = 1;
5 if xi ∈ X then /* According to Definition 9 */
6 gi = 1;
7 else
8 gi = 0;
9 end

10 for j=i+1 to n do /* According to Corollary 6 */
11 if mt+1

i j == 1 then
12 if (Sk

i j)
t+1 < λ then

13 mt+1
i j = 0;

14 else
15 mt+1

i j = 1;

16 end
17 else
18 if (xi , x j)

t+1 ∈ Sλ
A then

19 mt+1
i j = 1;

20 else
21 mt+1

i j = 0;

22 end
23 end

24 λi = λi + mt+1
i j ; /* Update λi */

25 end
26 end

27 Compute �
Sλ

A
n×n = diag

(
1∑n

j=1 m1 j
, 1∑n

j=1 m2 j
, · · · , 1∑n

j=1 mnj

)

28 Compute H(X) = �
Sλ

A
n×n •

(
M

Sλ
A

n×n • G(X)

)
/* Update H(X) */

29 end

output : G 
(

P O S(α,β)

Sλ
A

(X)

)
= H [α,1](X),G 

(
BN D(α,β)

Sλ
A

(X)

)
= H(α,β)(X),G 

(
N EG(α,β)

Sλ
A

(X)

)
= H [0,β](X)

Proof. Suppose mt
ij = 0. If (Sk

i j)
t ≥ λ, which means there exists an attribute al(l = k) ∈ A satisfying (Sl

i j)
t < λ, then mt+1

i j = 0. 
If (Sk

i j)
t < λ, according to Definition 6, mt+1

i j = 1 holds only if (xi, x j)
t+1 ∈ Sλ

A ; Suppose mt
ij = 1, which means for each al ∈ A, 

(Sl
i j)

t ≥ λ holds. Then if (Sk
i j)

t+1 < λ, mt+1
i j = 0, else mt+1

i j = 1. �
Matrix computing algorithm under the situation of variation of attribute value set is as shown in Algorithm 4. In MA-

PBN-VA, step 3 → 9 computes characteristic vector G(X). The step 10 → 26 is to update relation matrix M Sλ
A

n×n . The total time 
complexity of MA-PBN-VA is shown in Theorem 4. MA-PBN-VA also has less time complexity compared with TA-PBN-IS.

Theorem 4. In TA-PBN-VA, time complexity of step 3 → 9 is O (n). Time complexity of step 3 → 26 is O (n2). So, the total time 
complexity of TA-PBN-IS is O (n2).

Proof. The proof is similar to the Proof of Theorem 3. �
4.3. Updating the object set

Corollary 8. Given an I v I St = (U t , At , V t , f t
)

for time t, X ⊆ U t , Gt(X) and Gt+1(X) are characteristic vector at time t and t + 1, 
respectively. Suppose a new object set �U = {xn+1, xn+2, · · · , xn+m} adding to U t at time t + 1, that is U t+1 = U t ∪ �U , Xt+1 =
Xt ∪ �X, �X ⊆ �U . Then Gt+1(X) =

(
gt+1

1 , gt+1
2 , · · · , gt+1

n+1, · · · , gt+1
n+m

)T
can be updated as follows.

gt+1
i =

⎧⎨
⎩

gt
i , 1 ≤ i ≤ n

1, xi ∈ �X ∧ n + 1 ≤ i ≤ n + m
0, x /∈ �X ∧ n + 1 ≤ i ≤ n + m

(25)

i
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Algorithm 5: Matrix computing algorithm for computing the positive, boundary and negative region of X in term of 
variation of object set (MA-PBN-VO).

input : An interval-valued information system at time t + 1 with a new object set �U = {xn+1, xn+2, · · · , xn+m}, a decision class X and a pair of 
threshold (α, β)

output : the positive region P O S Sλ
A
(X), boundary region BN D Sλ

A
(X) and negative region N EG Sλ

A
(X)

1 begin
2 U t ∪ �U → U t ; Xt ∪ �X → Xt ;
3 for i=1 to n+m do
4 mt+1

ii = 1;
5 if 1 ≤ i ≤ n then /* According to Definition 9 */
6 gt+1

i = gt
i ;

7 for j=i+1 to n+m do /* According to Corollary 6 */
8 if (xi , x j)

t+1 ∈ Sλ
A then

9 mt+1
i j = 1;

10 else
11 mt+1

i j = 0;

12 end
13 end
14 else if xi ∈ �X then
15 gt+1

i = 1;
16 else
17 gt+1

i = 0;
18 end

19 λi = λi + mt+1
i j ; /* Update λi */

20 end

21 Compute �
Sλ

A
n×n = diag

(
1∑n

j=1 m1 j
, 1∑n

j=1 m2 j
, · · · , 1∑n

j=1 mnj

)

22 Compute H(X) = �
Sλ

A
n×n •

(
M

Sλ
A

n×n • G(X)

)
/* Update H(X) */

23 end

output : G 
(

P O S(α,β)

Sλ
A

(X)

)
= H [α,1](X) ,G 

(
BN D(α,β)

Sλ
A

(X)

)
= H(α,β)(X),G 

(
N EG(α,β)

Sλ
A

(X)

)
= H [0,β](X)

Proof. Let U t+1 = U t ∪�U . Obviously, when 1 ≤ i ≤ n, characteristic vector Gt+1(X) is unchanged. According to Definition 8, 
when n + 1 ≤ i ≤ n + m, if xi ∈ �X , gt+1

i = 1. Otherwise, gt+1
i = 0 �

Matrix computing algorithm under the situation of variation of object set is shown in Algorithm 5. In MA-PBN-VA, step 
5 → 18 updates characteristic vector G(X)t+1. The step 7 → 13 is to compute relation matrix M

Sλ
A

(n+m)×(n+m) . The total time 
complexity of MA-PBN-VO is shown in Theorem 5.

Theorem 5. In TA-PBN-VO, time complexity of step 7 → 13 is O (n). Time complexity of step 3 → 20 is O (n2). So, the total time 
complexity of TA-PBN-VO is O (n2).

Proof. The proof is similar to the Proof of Theorem 3. �
5. Experimental evaluations

In this section, in order to test performance of TA-PBN-IS, MA-PBN-AA, MA-PBN-VA and MA-PBN-VO, we download 
six real number data sets from the University of California at Irvine (UCI) machine learning data repository and compare 
computational time of algorithms on UCI data sets. The description of data sets is shown in Table 3. In particular, as an 
important input parameter of the algorithm, X is generated by the decision attribute in IvIS generally. Considering that some 
datasets in Table 3 do not contain decision attribute and in order to illustrate the effectiveness of incremental algorithms 
for any decision class, X is randomly generated in experiment. Firstly, we need to transform real number data sets into 
interval-valued data sets. Refer to the statistical method mentioned in [16], we increase by 10% of the real number as 
the upper bound of interval-valued number and decrease by 10% as the lower bound, respectively. Then we compare the 
computational time of TA-PBN-IS, MA-PBN-AA, MA-PBN-VA and MA-PBN-VO oriented dynamic data sets. The computations 
are conducted on a PC with Windows 10 and Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz. Algorithms run in MATLAB 
2018b.
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Table 3
A description of data sets.

Serial number Data sets Abbreviation Instance Attributes

1 Wine Wine 178 13
2 Ecoli Ecoli 336 8
3 Abalone Abalone 4177 8
4 Waveform Database 

Generator (Version 2)
WDGV2 5000 40

5 Gait Classification GC 48 321
6 ForestFire FF 517 13

Fig. 1. The comparison of computation time between Algorithm TA-PBN-IS and MA-PBN-AA versus the size of data sets.

5.1. Comparison between TA-PBN-IS and MA-PBN-AA

Under the situation of updating the attribute set, we divide each data sets in Table 3 into equal parts according to the 
number of attributes. Then we gradually merge these sub datasets and compare computational time between TA-PBN-IS and 
MA-PBN-AA. The comparative result is shown in Fig. 1.

From Fig. 1, we can see clearly that computational time of Algorithm TA-PBN-IS and MA-PBN-AA increase with the 
increasing of size of attribute sets. Besides, we can draw such a conclusion that MA-PBN-AA is always faster than TA-PBN-IS 
on every data set in Table 3.

5.2. Comparison between TA-PBN-IS and MA-PBN-VA

Under the situation of updating the value of attribute set, we gradually update the attribute value sets in Table 3 with 
the ratio from 0% to 50%. Then we compare computational time between TA-PBN-IS and MA-PBN-VA. The comparative result 
is shown in Fig. 2.

From Fig. 2, we can see that computational time of TA-PBN-IS or MA-PBN-AA differs from the updating ratio of attribute 
sets. And it is also clearly that MA-PBN-VA is always faster than TA-PBN-IS on every data set in Table 3.

5.3. Comparison between TA-PBN-IS and MA-PBN-VO

Under the situation of updating the object set, we divide each data sets in Table 3 into equal parts according to the 
number of objects. In the same way, we gradually merge these sub datasets and compare computational time between 
TA-PBN-IS and MA-PBN-VO. The comparative result is shown in Fig. 3.

From Fig. 3, it is also clear that computational time of TA-PBN-IS and MA-PBN-VO increase with the increasing of size of 
object sets. Similarly, MA-PBN-VO is always faster than TA-PBN-IS on every data set in Table 3.
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Fig. 2. The comparison of computation time between Algorithm TA-PBN-IS and MA-PBN-VA versus the size of data sets.

Fig. 3. The comparison of computation time between Algorithm TA-PBN-IS and MA-PBN-VO versus the size of data sets.

6. Conclusion

IvIS can effectively reflect the uncertain information in real life. In fact, in the real scene, the uncertain information is 
constantly changing, and these changes can be comprehensively reflected in the dynamic IvIS. There are three situations in 
dynamic IvIS: updating of attribute sets, updating of attribute value and updating of object sets. In this paper, a matrix com-
putational framework based on λ-similarity relation is proposed. Then corresponding algorithms are established respectively 
to calculate the positive, boundary and negative region on IvIS under three situations mentioned above. Each algorithm is 
compared with the traditional algorithm on six data sets from UCI. The results show that the proposed algorithms run faster 
and are more effective than the traditional algorithm. Our future work will focus on three-way decisions methods on mixed 
data sets in dynamic data sets.
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